首页> 中文期刊> 《水科学与水工程:英文版》 >Parametric study on smoothed particle hydrodynamics for accurate determination of drag coefficient for a circular cylinder

Parametric study on smoothed particle hydrodynamics for accurate determination of drag coefficient for a circular cylinder

         

摘要

Simulations of two-dimensional (2D) flow past a circular cylinder with the smoothed particle hydrodynamics (SPH) method were conducted in order to accurately determine the drag coefficient. The fluid was modeled as a viscous liquid with weak compressibility. Boundary conditions,such as a no-slip solid wall, inflow and outflow, and periodic boundaries, were employed to resemble the physical problem. A sensitivity analysis, which has been rarely addressed in previous studies, was conducted on several SPH parameters. Hence, the effects of distinct parameters,such as the kernel choices and the domain dimensions, were investigated with the goal of obtaining highly accurate results. A range of Reynolds numbers (1e500) was simulated, and the results were compared with existing experimental data. It was observed that the domain dimensions and the resolution of SPH particles, in comparison to the obstacle size, affected the obtained drag coefficient significantly. Otherparameters, such as the background pressure, influenced the transient condition, but did not influence the steady state at which the drag coefficient was determined.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号