首页> 中文期刊> 《清华大学学报(英文版)》 >Distributed Truss Computation in Dynamic Graphs

Distributed Truss Computation in Dynamic Graphs

         

摘要

Large-scale graphs usually exhibit global sparsity with local cohesiveness,and mining the representative cohesive subgraphs is a fundamental problem in graph analysis.The k-truss is one of the most commonly studied cohesive subgraphs,in which each edge is formed in at least k 2 triangles.A critical issue in mining a k-truss lies in the computation of the trussness of each edge,which is the maximum value of k that an edge can be in a k-truss.Existing works mostly focus on truss computation in static graphs by sequential models.However,the graphs are constantly changing dynamically in the real world.We study distributed truss computation in dynamic graphs in this paper.In particular,we compute the trussness of edges based on the local nature of the k-truss in a synchronized node-centric distributed model.Iteratively decomposing the trussness of edges by relying only on local topological information is possible with the proposed distributed decomposition algorithm.Moreover,the distributed maintenance algorithm only needs to update a small amount of dynamic information to complete the computation.Extensive experiments have been conducted to show the scalability and efficiency of the proposed algorithm.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号