首页> 中文期刊> 《天津大学学报:英文版》 >Dynamic Velocity Feed-Forward Compensation Control with RBF-NN System Identification for Industrial Robots

Dynamic Velocity Feed-Forward Compensation Control with RBF-NN System Identification for Industrial Robots

         

摘要

A dynamic velocity feed-forward compensation control (DVFCC) approach with RBF neural network (RBF-NN) dynamic model identification was presented for the adaptive trajectory tracking of industrial robots.The proposed control approach combined the advantages of traditional feedback closed-loop position control and computed torque control based on inverse dynamic model.The feed-forward compensator used a nominal robot dynamics as accurate dynamic model and on-line identification with RBF-NN as uncertain part to improve dynamic modeling accuracy.The proposed compensation was applied as velocity feed-forward by an inverse velocity controller that can convert torque signal into velocity in the standard industrial controller.Then,the need for a torque control interface was avoided in the real-time dynamic control of industrial robot.The simulations and experiments were carried out on a gas cutting manipulator.The results show that the proposed control approach can reduce steady-state error,suppress overshoot and enhance tracking accuracy and efficiency in joint space and Cartesian space,especially under highspeed condition.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号