首页> 外文期刊>中国有色金属学会会刊:英文版 >Electrical properties and electrical field in depletion layer for CZT crystals
【24h】

Electrical properties and electrical field in depletion layer for CZT crystals

机译:CZT晶体的耗尽层中的电性能和电场

获取原文
获取原文并翻译 | 示例
       

摘要

Current—voltage (I—V) and capacitance—voltage (C—V) characteristics of Au/p-CZT contacts with different surface treatments on cadmium zinc telluride (CZT) wafer’s surface were measured with Agilent 4339B high resistance meter and Agilent 4294A precision impedance analyzer, respectively. The Schottky barrier height was 0.85±0.05, 0.96±0.05 eV for non-passivated and passivated CZT crystals by I—V measurement. By C—V measurement, the Schottky barrier height was 1.39±0.05, 1.51±0.05 eV for non-passivated and passivated CZT crystals. The results show that the passivation treatment can increase the barrier height of the Au/p-CZT contact and decrease the leakage current. The main reason is that the higher barrier height of Au/p-CZT contacts can decrease the possibility for electrons to pass through the native TeO2 film. Most of the applied voltage appears on the depleted layer and there is only a negligible voltage drops across the nearly undepleted region. Furthermore, the electric field in the depleted layer is not uniform and can be calculated by the depletion approximation. The maximum electric field of CZT crystals is Em1=133 V/cm at x=0 for non-passivated CZT crystal and Em2=55 V/cm for passivated CZT crystal, respectively.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号