首页> 中文期刊> 《中国有色金属学报:英文版》 >Mathematical model of multistage and multiphase chemical reactions in flash furnace

Mathematical model of multistage and multiphase chemical reactions in flash furnace

             

摘要

A mathematical model of multistage and multiphase reactions in flash smelting furnace, which based on the description of chemical reactions and reaction rate, is presented. In this model, main components of copper concentrate are represented as FeS 2 and CuFeS based on experiment, intermediate products are assumed to be S 2 and FeS, and the final products are assumed as FeS, FeO, SO 2, Cu 2S, FeO and FeO(SiO 2) 2. The model incorporates the transport of momentum, heat and mass, reaction kinetics between gas and particles, and reactions between gas and gas. The k-ε model is used to describe gas phase turbulence. The model uses the Eulerian approach for the gas flow equations and the Lagrangian approach for the particles. The coupling of gas and particle equations is performed through the particle source in cell(PSIC) method. Comparison between the model predictions and the plant measurements shows that the model has high reliability and accuracy.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号