首页> 中文期刊> 《中国有色金属学报:英文版》 >Microstructure and properties of submicron-scale TiC particle reinforced titanium matrix composites prepared by shock wave consolidation

Microstructure and properties of submicron-scale TiC particle reinforced titanium matrix composites prepared by shock wave consolidation

         

摘要

Submicron-scale TiC particle reinforced titanium matrix composites(TMCs) were prepared by shock wave consolidation technique at detonation speed of 2 5005 000 m/s. The microstructures were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The compressive strength and hardness values of the composites were also determined. The results show that the composites have higher compressive yield strength and hardness values than hot-rolled pure titanium. Twins in the microstructure of TMCs show that titanium particles undergo plastic deformation during consolidation process. The fine grains with size less than 1 μm often locate in the boundaries among the titanium particles. TiC particles seem to keep unchanged during the consolidation. These bring about the increase in strength and hardness for the composites. The detonation speed of 3 200 m/s is proper parameter for compacting powder in the present work.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号