首页> 中文期刊> 《理论物理通讯:英文版》 >Electronic Correlation Effects on the Optical Properties of SiC,BeO and Boron Nitride Nanotubes and Monolayers

Electronic Correlation Effects on the Optical Properties of SiC,BeO and Boron Nitride Nanotubes and Monolayers

         

摘要

We present numerical calculation of the impact of electron-electron interaction on the behavior of density of states and optical properties of BeO,SiC and Boron-Nitride nanotubes and sheets.Hubbard model hamiltonian is applied to describe the dynamics of electrons on the lattice structure of theses compounds.The excitation spectrum of the system in the presence of local electronic interactions has been found using mean Seld approach.We find the band gap width in both optical absorption and density of states reduces with local Hubbard electronic interaction parameter.The absorption spectra exhibits the remarkable peaks,mainly owing to the divergence behavior of density of states and excitonic effects.Also we compare optical absorption frequency behavior of BeO,SiC and Boron-Nitride nanotubes with each other.Furthermore we investigate the optical properties of BeO and SiC sheets.A novel feature of optical conductivity of these structures is the decrease of frequency gap in the optical spectrum due to electronic interaction.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号