首页> 外文期刊>作物学报:英文版 >A wheat chromosome 5AL region confers seedling resistance to both tan spot and Septoria nodorum blotch in two mapping populations
【24h】

A wheat chromosome 5AL region confers seedling resistance to both tan spot and Septoria nodorum blotch in two mapping populations

机译:小麦5AL染色体区域在两个作图种群中赋予幼苗抗棕褐色斑点和诺氏斑霉病的能力

获取原文
获取原文并翻译 | 示例
       

摘要

Tan spot(TS) and Septoria nodorum blotch(SNB), caused by Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, are important fungal leaf-spotting diseases of wheat that cause significant losses in grain yield. In this study, two recombinant inbred line populations, ‘Bartai’ × ‘Ciano T79’(referred to as B × C) and ‘Cascabel’ × ‘Ciano T79’(C × C) were tested for TS and SNB response in order to determine the genetic basis of seedling resistance. Genotyping was performed with the DAr Tseq genotypingby-sequencing(GBS) platform. A chromosome region on 5 AL conferred resistance to TS and SNB in both populations, but the effects were larger in B × C(R^2= 11.2%–16.8%) than in C × C(R^2= 2.5%–9.7%). Additionally, the chromosome region on 5BL(presumably Tsn1)was significant for both TS and SNB in B × C but not in C × C. Quantitative trait loci(QTL)with minor effects were identified on chromosomes 1B, 2A, 2B, 3A, 3B, 4D, 5A, 5B, 5D, 6B,and 6D. The two CIMMYT breeding lines ‘Bartai’ and ‘Cascabel’ contributed resistance alleles at both 5AL and 5BL QTL mentioned above. The QTL on 5AL showed linkage with the Vrn-A1 locus, whereas the vrn-A1 allele conferring lateness was associated with resistance to TS and SNB.
机译:Tan spot(TS) and Septoria nodorum blotch(SNB), caused by Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, are important fungal leaf-spotting diseases of wheat that cause significant losses in grain yield. In this study, two recombinant inbred line populations, ‘Bartai’ × ‘Ciano T79’(referred to as B × C) and ‘Cascabel’ × ‘Ciano T79’(C × C) were tested for TS and SNB response in order to determine the genetic basis of seedling resistance. Genotyping was performed with the DAr Tseq genotypingby-sequencing(GBS) platform. A chromosome region on 5 AL conferred resistance to TS and SNB in both populations, but the effects were larger in B × C(R^2= 11.2%–16.8%) than in C × C(R^2= 2.5%–9.7%). Additionally, the chromosome region on 5BL(presumably Tsn1)was significant for both TS and SNB in B × C but not in C × C. Quantitative trait loci(QTL)with minor effects were identified on chromosomes 1B, 2A, 2B, 3A, 3B, 4D, 5A, 5B, 5D, 6B,and 6D. The two CIMMYT breeding lines ‘Bartai’ and ‘Cascabel’ contributed resistance alleles at both 5AL and 5BL QTL mentioned above. The QTL on 5AL showed linkage with the Vrn-A1 locus, whereas the vrn-A1 allele conferring lateness was associated with resistance to TS and SNB.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号