首页> 中文期刊> 《中国科学》 >Poisson-Arago spot for gravitational waves

Poisson-Arago spot for gravitational waves

         

摘要

For the observer at infinity, a Schwarzschild black hole serves as an attractive opaque disk with a radius of 3√3 M that will produce the diffraction pattern of gravitational waves(GWs). In this study, we demonstrate that a bright spot, which is a diffraction effect analogous to the Poisson-Arago spot in optics, will appear when an ingoing(quasi-)plane GW is diffracted by a Schwarzschild black hole. Here, we propose the diffraction effect of the GWs described by the exact diffraction solution of the GWs using the Heun function. For the first time, the Fresnel half-wave zone method is proposed to calculate the angular part of the GW scattering stripes for the observer at infinity. The prospect of observing the diffraction bright spot is discussed with an eikonal approximation. For normal incidence(quasi)-plane waves with 100 Hz(0.1 Hz) frequency diffracted by the central black hole of the Milky Way, the time delay between the Earth bathed in a bright spot and the minimum of the first dark stripe is 3.86(3860) d. We will witness the second bright fringe(40% amplitude of the central bright spot) after 6.2(6200) d. This new diffraction pattern involving the early phase of inspirals and pulsars as continuous gravitational wave sources is a potential scientific target for future space-and ground-based gravitational wave detectors, respectively.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号