首页> 中文期刊> 《稀有金属:英文版》 >Microstructure and temperature dependence of magnetic properties of CuO-added MnZn ferrites

Microstructure and temperature dependence of magnetic properties of CuO-added MnZn ferrites

         

摘要

MnZn ferrites with the chemical formula Mn0.68Zn0.25Fe2.07O4 have been prepared by a conventional ceramic technique. Then, the effects of CuO addition on the microstructure and temperature dependence of magnetic properties of MnZn ferrites were investigated by characterizing the fracture surface micrograph and measuring the magnetic properties over a temperature ranging from 25 to 120 C. The results show that the lattice constant and average grain size increase with the increase of CuO concentration. When the CuO concentration is below 0.07 wt.%, the initial permeability and saturation magnetic flux density increase monotonously, and the temperature of the secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to a lower temperature with the increase of CuO concentra-tion. However, excessive CuO concentration (>0.07 wt.%) results in abnormal grain growth and porosity increase, which causes the initial permeability and saturation magnetic flux density decrease and the power loss increase at room temperature. Furthermore, the temperature of the secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to a higher temperature.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号