首页> 中文期刊> 《稀有金属:英文版》 >Determining hydrothermal deactivation mechanisms on Cu/SAPO-34 NH_(3)-SCR catalysts at low-and high-reaction regions:establishing roles of different reaction sites

Determining hydrothermal deactivation mechanisms on Cu/SAPO-34 NH_(3)-SCR catalysts at low-and high-reaction regions:establishing roles of different reaction sites

         

摘要

Hydrothermal deactivation is a constant chal-lenge in commercial catalytic process aimed at NOx emission control,which may be observed in the low(150-400℃)or high(400-550℃)-reaction regions.To the best of our knowledge,there is a lack of systematic research regarding the correlation between the reaction sites and the mechanism of hydrothermal degradation at various reaction regions.For a targeted investigation of this,Cu/zeolite catalysts have been prepared using different amounts of polyvinyl alcohol for adjusting their redox and acid properties.These catalysts exhibit hydrothermal deactivation in different reaction regions.No change is observed in the reaction mechanism even with hydrother-mal deactivation,but various reaction sites determine the performance deterioration in the low-and high-reaction regions.The redox properties and weak acid sites affect the hydrothermal deactivation in the low-reaction region,whereas the moderate/strong acid sites related to the structure mainly influence the hydrothermal deactivation in the high-reaction region.This work provides several the-oretical insights for optimizing the hydrothermal stabilities of Cu/zeolite catalysts.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号