首页> 中文期刊> 《稀有金属:英文版 》 >Microstructural evolution and numerical simulation of laser-welded Ti_(2)AlNb joints under different heat inputs

Microstructural evolution and numerical simulation of laser-welded Ti_(2)AlNb joints under different heat inputs

         

摘要

The influence of heat input on the microstructural evolution of laser-welded Ti_(2)AlNb joints was investigated in this study.The thermal cycles during welding process were analyzed by numerical simulation.In the heat affected zone(HAZ),the amount ofα_(2)and O phases decreased with laser power increasing.During the heating period,α_(2)→B2and O→B2transformations occurred,but the decomposition of the B2phase intoα_(2)and O phases was suppressed during the cooling period.The heat transfer in the HAZ generated more equiaxed B2grains,fewer LAGBs and a weaker{001}texture due to recovery,recrystallization and grain growth.The phase composition of the fusion zone remained single with only the B2phase with the increase in heat input,but the mode of grain growth transformed from cellular growth into cellular dendritic growth.A finite element model was established to simulate the thermal cycles during the welding process.Higher heat input induced higher peak temperature,leading to higher temperatures in the HAZ for longer periods of time,which was beneficial for theα_(2)→B2and O→B2transformations.The calculated cooling rates in both the HAZ and in the fusion zone were faster than the critical cooling rate for B2→α_(2)and B2→O transformations.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号