首页> 中文期刊> 《稀有金属:英文版 》 >Thermophysical properties of solution precursor plasma-sprayed La2Ce2O7 thermal barrier coatings

Thermophysical properties of solution precursor plasma-sprayed La2Ce2O7 thermal barrier coatings

         

摘要

La2Ce2O7 (LCO) is a promising candidate for thermal barrier coatings (TBCs) due to that it provides better thermal insulation than yttria-stabilized zirconia (YSZ) does. In this work, a TBC LCO was produced by solution precursor plasma spraying (SPPS). After the solution precursors were prepared and the spraying parameters were optimized, the thermophysical properties and thermal shock performance of the coatings were tested. It was found that the SPPS coating with segmentation crack density of 6 mm^-1 had the porosities of about 33.5% at spray distances of 35 mm. The thermal conductivity of the SPPS coatings is 0.50-0.75 W·m^-1·K^-1, much lower than that of the atmospheric plasma spraying (APS) coatings (0.85-1.25 W·m^-1·K^-1). The thermal shock performance of the SPPS coatings reached 60 cycles, much better than the APS coatings. This improvement is due to the segmentation cracks in the coatings, which can improve strain tolerance and effectively relieve internal stress. This study provides reference significance for further research on thermal barrier coatings.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号