首页> 中文期刊> 《稀有金属:英文版》 >Polarization independent superconducting nanowire detector with high-detection efficiency

Polarization independent superconducting nanowire detector with high-detection efficiency

         

摘要

The superconducting nanowire single photon detector(SNSPD) draws much attention because of its attractive performance at ultra violet, visible, and nearinfrared wavelengths, and it can be widespread in quantum information technologies. However, how to increase the absorption which can dramatically increase the quantum efficiency of the SNSPD is still a top research issue. In this study, the effect of incident medium and cavity material on the optical absorptance of cavity-integrated SNSPDs was systematically investigated using finite-element method. The simulation results demonstrate that for photons polarized parallel to nanowire orientation, even though the maximum absorptance of the nanowire is insensitive to cavity material,it does increase when the refractive index of incident medium decreases. For perpendicularly polarized photons, both incident medium and cavity material play significant roles,and the absorptance curves get closer to the parallel case as the refractive index of cavity material increases. Based on these results, two cavity-integrated SNSPDs with frontillumination structure which can enhance the absorptance for both parallel and perpendicular photons are proposed.Finally, a design to realize polarization-independent SNSPDs with high absorptance is presented.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号