首页> 中文期刊> 《自然科学进展(英文版)》 >Deformation and damage features of a Re/Ru-containing single crystal nickel base superalloy during creep at elevated temperature

Deformation and damage features of a Re/Ru-containing single crystal nickel base superalloy during creep at elevated temperature

         

摘要

The deformation and damage features of a 4.5%Re/3.0%Ru-containing single crystal nickel-based superalloy during the creep in the temperature range of 1040–1070 °C and stress range of 137–180 MPa was investigated by means of creep properties measurement and contrast analysis of dislocation configuration. The results showed that the alloy exhibited a better creep resistance in the range of the testing temperatures and stresses, the deformation mechanism of the alloy during steady state creep was dislocations climbing over the rafted γ′ phase.In the latter period of creep, the deformation mechanism of the alloy was dislocations shearing into the rafted γ′phase. It is believed that the dislocations shearing into γ′ phase may cross-slip from {111} to {100} planes for forming the K-W locks to restrain the slipping and cross-slipping of dislocations on {111} plane. As the creep goes on, the alternate slipping of dislocations results in the twisted of the rafted γ′ phase to promote the initiation and propagation of cracks along the γ/γ′ interfaces up to creep fracture, which is considered to be the damage and fracture feature of alloy during creep at high temperature.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号