首页> 中文期刊> 《气候变化研究进展:英文版》 >A new classification of large-scale climate regimes around the Tibetan Plateau based on seasonal circulation patterns

A new classification of large-scale climate regimes around the Tibetan Plateau based on seasonal circulation patterns

         

摘要

This study aims to develop a large-scale climate classification for investigating the characteristics of the climate regimes around the Tibetan Plateau based on seasonal precipitation, moisture transport and moisture divergence using in situ observations and ERA40 reanalysis data. The results indicate that the climate can be attributed to four regimes around the Plateau. They situate in East Asia, South Asia, Central Asia and the semi-arid zone in northern Central Asia throughout the dryland of northwestern China, in addition to the K?oppen climate classification. There are different collocations of seasonal temperature and precipitation: 1) in phase for the East and South Asia monsoon regimes, 2) anti-phase for theCentral Asia regime, 3) out-of-phase for the westerly regime. The seasonal precipitation concentrations are coupled with moisture divergence, i.e., moisture convergence coincides with the Asian monsoon zone and divergence appears over the Mediterranean-like arid climate region and westerly controlled area in the warm season, while it reverses course in the cold season. In addition, moisture divergence is associated with meridional moisture transport. The northward/southward moisture transport corresponds to moisture convergence/divergence, indicating that the wet and dry seasons are, to a great extent, dominated by meridional moisture transport in these regions. The climate mean southward transport results in the dry-cold season of the Asian monsoon zone and the dry-warm season, leading to desertification or land degradation in Central Asia and the westerly regime zone. The mean-wind moisture transport (MMT) is the major contributor to total moisture transport, while persistent northward transient eddy moisture transport (TEMT) plays a key role in dry season precipitation, especially in the Asian monsoon zone. The persistent TEMT divergence is an additional mechanism of the out-of-phase collocation in the westerly regime zone. In addition, the climatemean MMTand TEMTare associated with the atmospheric stationary wave and storm track, which results from the uplift of orography and landsea thermal contrast. Therefore, the paleoclimate changes in mid-latitude arid-semi-arid regions are linked to the different phases of uplift of mountains and plate motion tied to the evolution of the Mediterranean.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号