首页> 中文期刊> 《大气科学进展:英文版》 >Finescale Spiral Rainbands Modeled in a High-Resolution Simulation of Typhoon Rananim (2004)

Finescale Spiral Rainbands Modeled in a High-Resolution Simulation of Typhoon Rananim (2004)

         

摘要

Finescale spiral rainbands associated with Typhoon Rananim(2004)with the band length ranging from 10 to nearly 100 km and band width varying from 5 to 15 km are simulated using the Fifth-Generation NCAR/Penn State Mesoscale Model(MM5).The finescale rainbands have two types:one intersecting the eyewall and causing damaging wind streaks,and the other distributed azimuthally along the inner edge of the eyewall with a relatively short lifetime.The formation of the high-velocity wind streaks results from the interaction of the azimuthal flow with the banded vertical vorticity structure triggered by tilting of the horizontal vorticity.The vertical advection of azimuthal momentum also leads to acceleration of tangential flow at a relatively high altitude.The evolution and structures of the bands are also examined in this study. Further investigation suggests that the boundary inflection points are related tightly to the development of the finescale rainbands,consistent with previous findings using simple symmetric models.In particular,the presence of the level of inflow reversal in the boundary layer is a crucial factor controlling the formation of these bands.The near-surface wavy peaks of vertical vorticity always follow the inflection points in radial flow.The mesoscale vortices and associated convective updrafts in the eyewall are considered to strengthen the activity of finescale bands,and the updrafts can trigger the formation of the bands as they reside in the environment with inflow reversal in the boundary layer.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号