首页> 中文期刊> 《高分子科学:英文版》 >Reversible Mechanochemistry Enabled Autonomous Sustaining of Robustness of Polymers—An Example of Next Generation Self-healing Strategy

Reversible Mechanochemistry Enabled Autonomous Sustaining of Robustness of Polymers—An Example of Next Generation Self-healing Strategy

         

摘要

Even under low external force,a few macromolecules of a polymer have to be much more highly stressed and fractured first due to the inherent heterogeneous microstructure.When the materials keep on working under loading,as is often the case,the minor damages would add up,endangering the safety of use.Here we show an innovative solution based on mechanochemically initiated reversible cascading variation of metal-ligand complexations.Upon loading,crosslinking density of the proof-of-concept metallopolymer networks autonomously increases,and recovers after unloading.Meanwhile,the stress-induced tiny fracture precursors are blocked to grow and then restored.The entire processes reversibly proceed free of manual intervention and catalyst.The proposed molecular-level internal equilibrium prevention mechanisms fundamentally enhance durability of polymers in service.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号