首页> 中文期刊> 《等离子体科学和技术:英文版》 >Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

         

摘要

The water cooled ceramic breeder(WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor(CFETR).Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3 D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage,and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and^6 Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches201.23 MW. The displacement per atom per full power year(FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3.The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m^(-3) at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m^(-3) in more than ten years.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号