首页> 中文期刊> 《等离子体科学和技术:英文版》 >Design and experimental results of a 28 GHz,400 kW gyrotron for electron cyclotron resonance heating

Design and experimental results of a 28 GHz,400 kW gyrotron for electron cyclotron resonance heating

             

摘要

A high-power 28 GHz gyrotron has been successfully developed at the Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron was designed for electron cyclotron resonance heating(ECRH)in the spherical tokamak XL-50.A diode magnetron injection gun was designed to produce the required gyrating electron beam.The gyrotron operates in the TE8,3mode in a cylindrical open cavity.An internal quasi-optical mode converter was designed to convert the operating mode into a fundamental Gaussian wave beam and separate the spent electron beam from the outgoing microwave power.A tube has been built and successfully tested.The operational frequency of the tube is 28.1 GHz.For beam parameters at an accelerating voltage of 71 kV and beam current of 16 A,the gyrotron has delivered an output power of 400 kW,with a pulse length of 5 s.The output efficiency is about 50%with a singlestage depressed collector.The gyrotron has been installed on the XL-50 and has played an important role in the ECRH experiments.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号