首页> 中文期刊> 《石油科学:英文版 》 >A fast space-time-domain Gaussian beam migration approach using the dominant frequency approximation

A fast space-time-domain Gaussian beam migration approach using the dominant frequency approximation

             

摘要

The Gaussian beam migration(GBM) is a steady imaging approach, which has high accuracy and efficiency. Its implementation mainly includes the traditional frequency domain and the recent popular space-time domain. Firstly, we use the upward ray tracing strategy to get the backward wavefields. Then,we use the dominant frequency of the seismic data to simplify the imaginary traveltime calculation of the wavefields, which can cut down the Fourier transform number compared with the traditional GBM in the space-time domain. In addition, we choose an optimized parameter for the take-off angle increment of the up-going and down-going rays. These optimizations help us get an efficient space-time-domain acoustic GBM approach. Typical four examples show that the proposed method can significantly improve the computational efficiency up to one or even two orders of magnitude in different models with different model parameters and produce good imaging results with comparable accuracy and resolution with the traditional GBM in the space-time domain.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号