首页> 中文期刊> 《土壤圈:英文版》 >Using ^(137)Cs Tracer Technique to Evaluate Erosion and Deposition of Black Soil in Northeast China

Using ^(137)Cs Tracer Technique to Evaluate Erosion and Deposition of Black Soil in Northeast China

         

摘要

Soil and water losses through erosion have been serious in the black soil region of Northeast China. Therefore, a sloping cultivated land in Songnen Plain was selected as a case study to: 1) determine the 137Cs reference inventory in the study area; 2) calculate erosion and deposition rates of black soil on different slope locations; 3) conduct a sensitivity analysis of some model parameters; and 4) compare overall outputs using four different models. Three transects were set in the field with five slope locations for each transect, including summit, shoulder-slope, back-slope, foot-slope, and toe-slope. Field measurements and model simulation were used to estimate a bomb-derived 137Cs reference inventory in the study area. Soil erosion and deposition rates were estimated using four 137Cs models and percentage of 137Cs loss/gain. The 137Cs reference value in the study area was 2 232.8 Bq m-2 with 137Cs showing a clear topographic pattern, decreasing from the summit to shoulder-slope, then increasing again at the foot-slope and reaching a maximum at the toe-slope. Predicted soil redistribution rates for different slope locations varied. Among models, the Yang Model (YANG-M) overestimated erosion loss but underestimated deposition. However, the standard mass balance model (MBM1) gave predictions similar to a mass balance model incorporating soil movement by tillage (MBM2). Sensitivity analysis of the proportion factor 7 and distribution pattern of 137Cs in the surface layer demonstrated the impact of 137Cs enrichment on calculation of the soil erosion rate. Factors influencing the redistribution of fallout 137Cs in landscape should be fully considered as calculating soil redistribution rate using 137Cs technique.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号