首页> 中文期刊> 《中国颗粒学报:英文版》 >A dual-eddy EMMS-based turbulence model for laminar-turbulent transition prediction

A dual-eddy EMMS-based turbulence model for laminar-turbulent transition prediction

         

摘要

Turbulence is a century-old physics problem,and the prediction of laminar-turbulent transition remains a major challenge in computational fluid dynamics(CFD).This paper proposes a new conceptual multiscale-structure flow system consisting of a nonturbulent part and two types of turbulent eddies with different properties.The stability criterion for turbulent transition flows,based on the principle of compromise-in-competition between viscosity and inertia,is used to obtain model closure.The multiscale-structure concept and stability criterion are the characteristics of the dual-eddy energy-minimization multiscale(EMMS)-based turbulence model.The solved heterogeneous structure parameters and energy dissipation rate are analyzed,which reveal the laminar-turbulent transition process.To validate the dual-eddy EMMS-based turbulence model,three benchmark problems,namely,the transitional flows over the flat plate boundary layer with zero pressure gradient,NACA0012,and Aerospatiale-A airfoils,were simulated.The simulation was performed by combining the optimized results from the proposed model with the equations of the well-known κ-ω shear stress transfer(SST)turbulence model.The numerical results show that the dual-eddy EMMS-based turbulence model improves the prediction in the laminar-turbulent transition process.This demonstrates the soundness of using the multiscale-structure concept in turbulent flows to establish the turbulence transition model by considering the principle of compromise-in-competition between viscosity and inertia.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号