首页> 外文期刊>光电进展(英文版) >Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication
【24h】

Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication

机译:光学纳米天线和超颖表面中的非线性频率转换:材料演变和制造

获取原文
获取原文并翻译 | 示例
           

摘要

Nonlinear frequency conversion is one of the most fundamental processes in nonlinear optics.It has a wide range of applications in our daily lives,including novel light sources,sensing,and information processing.It is usually assumed that nonlinear frequency conversion requires large crystals that gradually accumulate a strong effect.However,the large size of nonlinear crystals is not compatible with the miniaturisation of modem photonic and optoelectronic systems.Therefore,shrinking the nonlinear structures down to the nanoscale,while keeping favourable conversion efficiencies,is of great importance for future photonics applications.In the last decade,researchers have studied the strategies for enhancing the nonlinear efficiencies at the nanoscale,e.g.by employing different nonlinear materials,resonant couplings and hybridization techniques.In this paper,we provide a compact review of the nanomaterials-based efforts,ranging from metal to dielectric and semiconductor nanostructures,including their relevant nanofabrication techniques.
机译:非线性频率转换是非线性光学中最基本的过程之一。它在我们的日常生活中具有广泛的应用,包括新颖的光源,传感和信息处理。通常假定非线性频率转换需要逐渐变大的晶体。但是,非线性晶体的大尺寸与现代光子和光电系统的小型化不兼容。因此,将非线性结构缩小至纳米级,同时保持良好的转换效率,对于未来的光子学具有重要意义。在过去的十年中,研究人员研究了通过使用不同的非线性材料,共振耦合和杂交技术来提高纳米级非线性效率的策略。从金属到介电和半导体纳米结构,包括运用他们相关的纳米制造技术。

著录项

  • 来源
    《光电进展(英文版)》 |2018年第10期|1-12|共12页
  • 作者单位

    Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia;

    The Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom;

    Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia;

    Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia;

    Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany;

    School of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia;

    School of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia;

    Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia;

    Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia;

    Matériaux et Phénomènes Quantiques, Université Paris Diderot-Sorbonne Paris Cité, 10 rue A.Domon et L.Duquet, 75013 Paris, France;

    Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States;

    Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom;

    The Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom;

    Chair in Hybrid Nanosystems, Nano Institute Munich, Fakult(a)t für Physik, Ludwig-Maximilians-Universit(a)t München, München, Germany;

    Deptartment of Information Engineering, Universitàdegli Studi di Brescia and INO-CNR, Via Branze 38, 25123 Brescia, Italy;

    Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia;

    Matériaux et Phénomènes Quantiques, Université Paris Diderot-Sorbonne Paris Cité, 10 rue A.Domon et L.Duquet, 75013 Paris, France;

    Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号