首页> 中文期刊> 《中国神经再生研究:英文版 》 >Modulation of neuronal dynamic range using two different adaptation mechanisms

Modulation of neuronal dynamic range using two different adaptation mechanisms

             

摘要

The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range.A larger dynamic range indicates a greater probability of neuronal survival.In this study,the potential roles of adaptation mechanisms(ion currents) in modulating neuronal dynamic range were numerically investigated.Based on the adaptive exponential integrate-and-fire model,which includes two different adaptation mechanisms,i.e.subthreshold and suprathreshold(spike-triggered) adaptation,our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range.Specifically,subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range,while suprathreshold adaptation has little influence on the neuronal dynamic range.Moreover,when stochastic noise was introduced into the adaptation mechanisms,the dynamic range was apparently enhanced,regardless of what state the neuron was in,e.g.adaptive or non-adaptive.Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms.Additionally,noise was a non-ignorable factor,which could effectively modulate the neuronal dynamic range.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号