首页> 外文期刊>天然气化学(英文版) >Modeling the oxidative coupling of methane:Heterogeneous chemistry coupled with 3D flow field simulation
【24h】

Modeling the oxidative coupling of methane:Heterogeneous chemistry coupled with 3D flow field simulation

机译:甲烷氧化偶联建模:异质化学与3D流场模拟

获取原文
获取原文并翻译 | 示例
       

摘要

The oxidative coupling of methane (OCM) over titanate perovskite catalyst has been developed by three-dimensional numerical simulations of flow field coupled with heat transfer as well as heterogeneous kinetic model. The reaction was assumed to take place both in the gas phase and on the catalytic surface. Kinetic rate constants were experimentally obtained using a ten step kinetic model. The simulation results agree quite well with the data of OCM experiments, which were used to investigate the effect of temperature on the selectivity and conversion obtained in the methane oxidative coupling process. The conversion of methane linearly increased with temperature and the selectivity of C2 was practically constant in the temperature range of 973–1073 K. The study shows that CFD tools make it possible to implement the heterogeneous kinetic model even for high exothermic reaction such as OCM.
机译:The oxidative coupling of methane (OCM) over titanate perovskite catalyst has been developed by three-dimensional numerical simulations of flow field coupled with heat transfer as well as heterogeneous kinetic model.The reaction was assumed to take place both in the gas phase and on the catalytic surface.Kinetic rate constants were experimentally obtained using a ten step kinetic model.The simulation results agree quite well with the data of OCM experiments,which were used to investigate the effect of temperature on the selectivity and conversion obtained in the methane oxidative coupling process.The conversion of methane linearly increased with temperature and the selectivity of C2 was practically constant in the temperature range of 973-1073 K.The study shows that CFD tools make it possible to implement the heterogeneous kinetic model even for high exothermic reaction such as OCM.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号