首页> 中文期刊> 《纳米研究:英文版》 >Dimensional characterization of cadmium selenide nanocrystals via indirect Fourier transform evaluation of small-angle X-ray scattering data

Dimensional characterization of cadmium selenide nanocrystals via indirect Fourier transform evaluation of small-angle X-ray scattering data

         

摘要

The correlation of single-particle imaging and absorption spectroscopy made the development of sizing curves possible and enabled rapid size determination of semiconductor nanocrystals based solely on optical properties.The increasing demand and production of such materials has resulted in a question of comparability between existing models and adequate volume-weighted size-determining measurement techniques.Small-angle X-ray scattering(SAXS)is a well-established method for obtaining nanostructural information from particle systems while operating sample quantities up to a commercial scale with a large amount of statistically based data.This work utilizes laboratory SAXS to characterize cadmium selenide nanocrystals with band edge energies between 1.97 and 3.08 eV.The evaluation of the scattering patterns is based on an indirect Fourier transformation(IFT),while dimensional parameters are derived from the model-free pair distance distribution functions(Dmode and Dg),as well as the modeled volume(Dv)and number(Dn)-weighted size-density distributions.We find that comparable data from D̅n agree well with existing X-ray diffraction(XRD)and with transmission electron microscopy(TEM)results described in literature;this qualifies SAXS as an equivalent integral characterization method.Although based on an estimate,the radius of gyration yields equivalent accurate results.Additionally,corresponding volume-weighted data are shown that can be useful when transferring information to other techniques.Dmode parametrization represents the largest estimated size of the sample and implies that particles interact and deviate from the spherical morphology,whereas Dv demonstrates results not considering such effects.A full set of the parameters discussed quantifies the quality of a sample.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号