首页> 外文期刊>纳米研究(英文版) >Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement
【24h】

Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement

机译:通过化学气相沉积在MoS2中注入可控缺陷以增强光致发光

获取原文
获取原文并翻译 | 示例
       

摘要

Photoluminescence (PL) of transition metal dichalcogenides (TMDs) can be engineered by controlling the density of defects,which provide active sites for electron-hole recombination,either radiatively or non-radiatively.However,the implantation of defects by external stimulation,such as uniaxial tension and irradiation,tends to introduce local damages or structural non-homogeneity,which greatly degrades their luminescence properties and impede their applicability in constructing optoelectronic devices.In this paper,we present a strategy to introduce a controllable level of defects into the MoS2 monolayers by adding a hydrogen flow during the chemical vapor deposition,without sacrificing their luminescence characteristics.The density of the defect is controlled directly by the concentration of hydrogen.For an appropriate hydrogen flux,the monolayer MoS2 sheets have three times stronger PL emission at the excitonic transitions,compared with those samples with nearly perfect crystalline structure.The defect-bounded exciton transitions at lower energies arising in the defective samples and are maximized when the total PL is the strongest.However,the B exciton,exhibits a monotonic decline as the defect density increases.The Raman spectra of the defective MoS2 reveal a redshift (blueshift) of the in-plane (out-of-plane) vibration modes as the hydrogen flux increases.All the evidence indicates that the generated defects are in the form of sulfur vacancies.This study renders the high-throughput synthesis of defective MoS2 possible for catalysis or light emitting applications.
机译:过渡金属二硫化碳(TMD)的光致发光(PL)可以通过控制缺陷的密度来设计,这些缺陷可以提供辐射或非辐射的电子-空穴复合活性位点。单轴拉伸和辐照往往会引入局部损伤或结构不均匀,从而大大降低其发光性能并阻碍其在构建光电器件中的适用性。本文提出了一种将可控水平的缺陷引入MoS2单层的策略。通过在化学气相沉积过程中添加氢流,而不会牺牲其发光特性。缺陷的密度直接由氢的浓度控制。对于适当的氢通量,单层MoS2片在激子上的PL发射强度要强三倍与那些具有近乎完美的结晶st的样品相比MoS2的拉曼光谱在缺陷能量较低的情况下会出现缺陷边界的激子跃迁,并在总PL最强时最大化。然而,B激子随着缺陷密度的增加而呈现单调下降。揭示了随着氢通量的增加,面内(面外)振动模式的红移(blueshift)。所有证据表明所产生的缺陷是以硫空位的形式存在的。本研究提出了高通量合成催化或发光应用中可能存在的有缺陷的MoS2。

著录项

  • 来源
    《纳米研究(英文版)》 |2018年第8期|4123-4132|共10页
  • 作者单位

    School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;

    School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;

    School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro-and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China;

    The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China;

    School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;

    Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China;

    School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;

    Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China;

    Department of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China;

    Department of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China;

    School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;

    Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China;

    School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro-and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 04:27:05
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号