首页> 外文期刊>纳米研究(英文版) >Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature
【24h】

Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature

机译:氮掺杂石墨烯水凝胶负载的NiPt-CeOx纳米复合材料及其在室温下由肼生成氢的优异催化作用

获取原文
获取原文并翻译 | 示例
           

摘要

The safe and efficient storage and release of hydrogen is one of the key technological challenges for the fuel cell-based hydrogen economy.Hydrazine monohydrate has attracted considerable attention as a safe and convent chemical hydrogen-storage material.Herein,we report the facile synthesis of NiPt-CeOx nanocomposites supported by three-dimensional nitrogen-doped graphene hydrogels (NGHs) via a simple one-step co-reduction synthesis method.These catalysts were composition-dependent for hydrogen generation from an alkaline solution of hydrazine.(Ni5Pt5)1-(CeOx)0.3/NGH exhibited the highest catalytic activity,with 100% hydrogen selectivity and turnover frequencies of 408 h-1 at 298 K and 3,064 h-1 at 323 K.These superior catalytic performances are attributed to the electronic structure of the NiPt centers,which was modified by the electron interaction between NiPt and CeOx and the strong metal-support interaction between NiPt-CeOx and the NGH.
机译:安全有效地储氢和释放氢是基于燃料电池的氢经济面临的关键技术挑战之一。一水合肼作为一种安全,便捷的化学储氢材料受到了广泛的关注。在此,我们报道了氢的简便合成NiPt-CeOx纳米复合材料通过简单的一步共还原合成方法由三维氮掺杂石墨烯水凝胶(NGHs)支撑,这些催化剂的组成依赖于从肼的碱性溶液中产生氢。(Ni5Pt5)1- (CeOx)0.3 / NGH表现出最高的催化活性,在298 K时氢选择性为100 h,在323 K时为3,064 h-1的氢的转换频率为100%。这些优越的催化性能归因于NiPt的电子结构NiPt和CeOx之间的电子相互作用以及NiPt-CeOx和NGH之间的强金属-载体相互作用修饰了这些中心。

著录项

  • 来源
    《纳米研究(英文版)》 |2017年第8期|2856-2865|共10页
  • 作者单位

    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;

    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;

    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;

    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;

    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;

    College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;

    Key laboratory of Advanced Energy Materials Chemistry(Ministry of Education), Nankai University, Tianjin 300071, China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号