首页> 外文期刊>纳米研究(英文版) >Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism
【24h】

Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism

机译:氧化铁纳米粒子的内在拮抗作用使其活性生物相容性破译

获取原文
获取原文并翻译 | 示例
       

摘要

Magnetite nanoparticles (Fe3O4 NPs) are a well proven biocompatible nanomaterial, which hold great promise in various biomedical applications. Interestingly, unlike conventional biocompatible materials (e.g., polyethylene glycol (PEG)) that are chemically and biologically inert in nature, Fe304 NPs are known to be catalytically active and exhibit prominent physiological effects. Herein, we report an "active", dynamic equilibrium mechanism for maintaining the cellular amenity of Fe304 NPs. We examined the effects of two types of iron oxide (magnetite and hematite) NPs in rat pheochromocytoma (PC12) cells and found that both induced stress responses. However, only Fe203 NPs caused significant programmed cell death; whereas Fe304 NPs are amenable to cells. We found that intrinsic catalase-like activity of Fe3O4 NPs antagonized the accumulation of toxic reactive oxygen species (ROS) induced by themselves, and thereby modulated the extent of cellular oxidative stress, autophagic activity, and programmed cell death. In line with this observation, we effectively reversed severe autophagy and cell death caused by Fe2O3 NPs via co-treatment with natural catalase. This study not only deciphers the distinct intrinsic antagonism of Fe3O4 NPs, but opens new routes to designing biocompatible theranostic nanoparticles with novel mechanisms.
机译:磁铁矿纳米颗粒(Fe3O4 NPs)是一种行之有效的生物相容性纳米材料,在各种生物医学应用中具有广阔的前景。有趣的是,与传统上具有化学和生物惰性的生物相容性材料(例如,聚乙二醇(PEG))不同,已知Fe304 NP具有催化活性并表现出显着的生理作用。在本文中,我们报告了一种维持Fe304 NPs的细胞舒适性的“主动”动态平衡机制。我们检查了两种类型的氧化铁(磁铁矿和赤铁矿)NPs在大鼠嗜铬细胞瘤(PC12)细胞中的作用,发现两者均诱导了应激反应。但是,只有Fe2O3 NPs导致明显​​的程序性细胞死亡。 Fe304 NPs适合细胞。我们发现Fe3O4 NPs的固有过氧化氢酶样活性拮抗了自身诱导的有毒活性氧(ROS)的积累,从而调节了细胞氧化应激的程度,自噬活性和程序性细胞死亡。与该观察结果一致,我们通过与天然过氧化氢酶共同处理有效地逆转了由Fe2O3 NP引起的严重自噬和细胞死亡。这项研究不仅破译了Fe3O4 NPs独特的内在拮抗作用,而且为设计具有新机制的生物相容性治疗用纳米粒子开辟了新途径。

著录项

  • 来源
    《纳米研究(英文版)》 |2018年第5期|2746-2755|共10页
  • 作者单位

    Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;

    Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;

    Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;

    Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;

    School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China;

    Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;

    School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China;

    Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;

    Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;

    Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;

    Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;

    Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;

    UCB Pharma, 208 Bath Road, Slough, SL13WE, UK;

    College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:47:26
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号