首页> 外文期刊>纳米研究(英文版) >InP/GaInP nanowire tunnel diodes
【24h】

InP/GaInP nanowire tunnel diodes

机译:InP / GaInP纳米线隧道二极管

获取原文
获取原文并翻译 | 示例
       

摘要

Semiconductor nanowire (NW) solar cells with a single p-n junction have exhibited efficiency comparable to that of their planar counterparts with a substantial reduction in material consumption. Tandem geometry is a path toward the fabrication of devices with even higher efficiencies, for which a key step is the fabrication of tunnel (Esaki) diodes within NWs with the correct diameter, pitch, and material combination for maximized efficiency. InP/GaInP and GaInP/InP NW tunnel diodes with band gap combinations corresponding to high-efficiency solar energy harvesting were fabricated and their electrical characteristics and material properties were compared. Four different configurations, with respect to material composition and doping, were investigated. The NW arrays were grown with metal-organic vapor-phase epitaxy from Au particles by use of nano-imprint lithography, metal evaporation and lift-off. Electrical measurements showed that the NWs behave as tunnel diodes in both InP (bottom)/GaInP (top) and GaInP (bottom)/InP (top) configurations, exhibiting a maximum peak current density of 25 A/cm2, and maximum peak to valley current ratio of 2.5 at room temperature. The realization of NW tunnel diodes in both InP/GaInP and GaInP/InP configurations represent an opportunity for the use of NW tandem solar cells, whose efficiency is independent of the growth order of the different materials, increasing the flexibility regarding dopant incorporation polarity.
机译:具有单个p-n结的半导体纳米线(NW)太阳能电池显示出的效率与其平面同类产品相当,并且材料消耗大大降低。串联几何结构是通向更高效率器件制造的道路,为此,关键一步是在NW内以正确的直径,节距和材料组合制造隧道(Esaki)二极管,以实现最大效率。制备了带隙组合对应于高效太阳能收集的InP / GaInP和GaInP / InP NW隧道二极管,并比较了它们的电特性和材料性能。关于材料组成和掺杂,研究了四种不同的配置。通过使用纳米压印光刻技术,金属蒸发和剥离技术,从Au颗粒中以金属有机气相外延生长NW阵列。电气测量表明,在InP(底部)/ GaInP(顶部)和GaInP(底部)/ InP(顶部)配置中,NW都充当隧道二极管,最大峰值电流密度为25A / cm2,最大峰谷室温下电流比为2.5。在InP / GaInP和GaInP / InP配置中实现NW隧道二极管为NW串联太阳能电池的使用提供了机会,NW串联太阳能电池的效率与不同材料的生长顺序无关,从而增加了掺杂剂掺入极性的灵活性。

著录项

  • 来源
    《纳米研究(英文版)》 |2018年第5期|2523-2531|共9页
  • 作者单位

    Solid State Physics, NanoLund, Department of Physics, Lund University, P.O. Box 118, Lund SE-22100, Sweden;

    Solid State Physics, NanoLund, Department of Physics, Lund University, P.O. Box 118, Lund SE-22100, Sweden;

    Solid State Physics, NanoLund, Department of Physics, Lund University, P.O. Box 118, Lund SE-22100, Sweden;

    Sol Voltaics AB, Ideon Science Park, Scheelev(a)gen 17, Lund SE-22370, Sweden;

    Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro 21941-972, Brazil;

    Solid State Physics, NanoLund, Department of Physics, Lund University, P.O. Box 118, Lund SE-22100, Sweden;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:47:26
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号