首页> 外文期刊>纳米研究(英文版) >Plasmon resonant amplification of a hot electron-driven photodiode
【24h】

Plasmon resonant amplification of a hot electron-driven photodiode

机译:热电子驱动光电二极管的等离子体共振放大

获取原文
获取原文并翻译 | 示例
       

摘要

We report plasmon resonant excitation of hot electrons in a photodetector based on a metal/oxide/metal (Au/Al2O3/graphene) heterostructure.In this device,hot electrons,excited optically in the gold layer,jump over the oxide barrier and are injected into the graphene layer,producing a photocurrent.To amplify this process,the bottom gold electrode is patterned into a plasmon resonant grating structure with a pitch of 500 nm.The photocurrent produced in this device is measured using 633-nm-wavelength light as a function of incident angle.We observe the maximum photocurrent at ±10° from normal incidence under irradiation with light polarized parallel to the incident plane (p-polarizafion) and perpendicular to the lines on the grating,and a constant (angle-independent) photocurrent under irradiation with light polarized perpendicular to the incident plane (s-polarization) and parallel to the grating.These data show an amplification factor of 4.6× under resonant conditions.At the same angle (±10°),we also observe sharp dips in the photoreflectance corresponding to waveve ctor matching between the incident light and the plasmon mode in the grating.In addition,finite-difference time-domain simulations predict sharp dips in the photoreflectance at ±10°,and the electric field intensity profiles show clear excitation of a plasmon resonant mode when illuminated with p-polarized light at this angle.
机译:我们在基于金属/氧化物/金属(Au / Al2O3 /石墨烯)异质结构中报告光电探测器中热电子的等离子体谐振激发。在该装置中,热电子,在金层中光学激发,跳过氧化物屏障并注射进入石墨烯层,产生光电流。为了放大该过程,将底部金电极图案化成等离子体谐振光栅结构,其间距为500nm。使用633-nm波长光测量在该装置中产生的光电流作为a入射角的函数。我们观察到±10°的最大光电流,从正常入射,在与入射平面(P-olizafion)平行的光线和​​光栅上的线偏振,以及恒定(角度无关)的光电流在用垂直于入射平面(S偏振)的光偏振并平行于光栅的光照射。这些数据显示了共振条件下的4.6×的放大因子。相同的角度(±10°),我们还观察到光射压的尖锐倾斜对应于入射光与栅格之间的波浪CTOR匹配。在光栅中,有限差分时域模拟预测±10的光反射率尖锐的垂直°,电场强度分布在此角度用p偏振光照射时,可以清除等离子体谐振模式的激发。

著录项

  • 来源
    《纳米研究(英文版)》 |2018年第4期|2310-2314|共5页
  • 作者单位

    Mark Family Department of Chemical Engineering and Materials Science University of Southern California, Los Angeles, CA 90089, USA;

    Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA;

    Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA;

    Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA;

    Department of Physics, University of Connecticut, Storrs, CT 06269, USA;

    Ciencia Inc., East Hartford, CT 06108, USA;

    Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA;

    Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA;

    Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA;

    Ciencia Inc., East Hartford, CT 06108, USA;

    Ciencia Inc., East Hartford, CT 06108, USA;

    Ciencia Inc., East Hartford, CT 06108, USA;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:47:26
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号