首页> 外文期刊>纳米研究(英文版) >In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires
【24h】

In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires

机译:超薄金纳米线中瑞利不稳定性的原位原子尺度分析

获取原文
获取原文并翻译 | 示例
       

摘要

Comprehensive understanding of the structural/morphology stability of ultrathin (diameter < 10nm) gold nanowires under real service conditions (such as under Joule heating) is a prerequisite for the reliable implementation of these emerging building blocks into functional nanoelectronics and mechatronics systems.Here,by using the in situ transmission electron microscopy (TEM) technique,we discovered that the Rayleigh instability phenomenon exists in ultrathin gold nanowires upon moderate heating.Through the controlled electron beam irradiation-induced heating mechanism (with < 100 ℃ temperature rise),we further quantified the effect of electron beam intensity and its dependence on Rayleigh instability in altering the geometry and morphology of the ultrathin gold nanowires.Moreover,in situ high-resolution TEM (HRTEM) observations revealed surface atomic diffusion process to be the dominating mechanism for the morphology evolution processes.Our results,with unprecedented details on the atomic-scale picture of Rayleigh instability and its underlying physics,provide critical insights on the thermal/structural stability of gold nanostructures down to a sub-10 nm level,which may pave the way for their interconnect applications in future ultralarge-scale integrated circuits.
机译:全面了解超薄(直径≤10nm)金纳米线在实际使用条件下(例如在焦耳加热下)的结构/形态稳定性是将这些新兴构件可靠地应用于功能纳米电子和机电一体化系统的前提条件。利用原位透射电子显微镜(TEM)技术,发现中温加热后超细金纳米线中存在瑞利不稳定性现象。通过受控的电子束辐照诱导加热机理(温度升高<100℃),我们进一步定量电子束强度及其对瑞利不稳定性的影响,改变了超薄金纳米线的几何结构和形貌。此外,原位高分辨率TEM(HRTEM)观测表明,表面原子扩散过程是形貌演化的主要机制。流程。我们的结果具有前所未有的细节瑞利不稳定性及其潜在物理学的断层图像,提供了对金纳米结构直至10纳米以下的热/结构稳定性的重要见解,这可能为它们在未来超大规模集成电路中的互连应用铺平道路。

著录项

  • 来源
    《纳米研究(英文版)》 |2018年第2期|625-632|共8页
  • 作者

    Shang Xu; Peifeng Li; Yang Lu;

  • 作者单位

    Department of Mechanical and Biomedical Engineering, City University of Hang Kong, 83 Tat Chee Avenue Kowloon, Hang Kong, China;

    Department of Mechanical and Biomedical Engineering, City University of Hang Kong, 83 Tat Chee Avenue Kowloon, Hang Kong, China;

    Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China;

    Department of Mechanical and Biomedical Engineering, City University of Hang Kong, 83 Tat Chee Avenue Kowloon, Hang Kong, China;

    Hong Kong Branch of National Precious Metals Material Engineering Research Center(NPMM), 83 Tat Chee Avenue, Kowloon, Hang Kong, China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:47:25
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号