首页> 外文期刊>纳米研究(英文版) >Atomic disorders in layer structured topological insulator SnBi2Te4 nanoplates
【24h】

Atomic disorders in layer structured topological insulator SnBi2Te4 nanoplates

机译:层结构拓扑绝缘体SnBi2Te4纳米板中的原子障碍

获取原文
获取原文并翻译 | 示例
       

摘要

Identification of atomic disorders and their subsequent control has proven to be a key issue in predicting,understanding,and enhancing the properties of newly emerging topological insulator materials.Here,we demonstrate direct evidence of the cation antisites in single-crystal SnBi2Te4 nanoplates grown by chemical vapor deposition,through a combination of sub-(a)ngstr(o)m-resolution imaging,quantitative image simulations,and density functional theory calculations.The results of these combined techniques revealed a recognizable amount of cation antisites between Bi and Sn,and energetic calculations revealed that such cation antisites have a low formation energy.The impact of the cation antisites was also investigated by electronic structure calculations together with transport measurement.The topological surface properties of the nanoplates were further probed by angle-dependent magnetotransport,and from the results,we observed a two-dimensional weak antilocalization effect associated with surface carriers.Our approach provides a pathway to identify the antisite defects in ternary chalcogenides and the application potential of SnBi2Te4 nanostructures in next-generation electronic and spintronic devices.
机译:事实证明,鉴定原子异常及其后续控制是预测,理解和增强新兴拓扑绝缘体材料性能的关键问题。在这里,我们证明了化学生长的单晶SnBi2Te4纳米板中阳离子反位点的直接证据。通过亚(a)ngstr(o)m分辨率成像,定量图像模拟和密度泛函理论计算的组合进行气相沉积。这些组合技术的结果表明,Bi和Sn之间存在可识别量的阳离子反位点,并且高能计算表明,这种阳离子反位点的形成能较低。还通过电子结构计算和输运测量研究了阳离子反位点的影响。结果,我们观察到了二维弱的抗局部定位作用我们的方法为鉴定三元硫族化物中的反位缺陷以及SnBi2Te4纳米结构在下一代电子和自旋电子器件中的应用潜力提供了一种途径。

著录项

  • 来源
    《纳米研究(英文版)》 |2018年第2期|696-706|共11页
  • 作者单位

    Materials Engineering, University of Queensland, Brisbane, QLD 4072, Australia;

    Department of Materials Science & Engineering, the University of Texas at Dallas, Richardson, TX 75080, USA;

    Materials Engineering, University of Queensland, Brisbane, QLD 4072, Australia;

    Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia;

    Materials Engineering, University of Queensland, Brisbane, QLD 4072, Australia;

    Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia;

    Laboratory of Surface Physics and Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai200433, China;

    Department of Materials Science & Engineering, the University of Texas at Dallas, Richardson, TX 75080, USA;

    Beijing Key Lab of Microstructure and Property of Advanced Materials, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China;

    Materials Engineering, University of Queensland, Brisbane, QLD 4072, Australia;

    Beijing Key Lab of Microstructure and Property of Advanced Materials, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China;

    Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia;

    WPI, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aobo-ku, Sendai 980-8577, Japan;

    Quantum Materials, Science and Technology Department, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal;

    Laboratory of Surface Physics and Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai200433, China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:47:25
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号