首页> 中文期刊> 《分子植物(英文版)》 >New GATEWAY vectors for High Throughput Analyses of Protein-Protein Interactions by Bimolecular Fluorescence Complementation

New GATEWAY vectors for High Throughput Analyses of Protein-Protein Interactions by Bimolecular Fluorescence Complementation

         

摘要

Complex protein interaction networks constitute plant metabolic and signaling systems. Bimolecular fluores-cence complementation (BiFC) is a suitable technique to investigate the formation of protein complexes and the locali-zation of protein-protein interactions in planta. However, the generation of large plasmid collections to facilitate the exploration of complex interaction networks is often limited by the need for conventional cloning techniques. Here, we report the implementation of a GATEWAY vector system enabling large-scale combination and investigation of can-didate proteins in BiFC studies. We describe a set of 12 GATEWAY-compatible BiFC vectors that efficiently permit the com-bination of candidate protein pairs with every possible N-or C-terminal sub-fragment of S(CFP)3A or Venus, respectively, and enable the performance of multicolor BiFC (mcBiFC). We used proteins of the plant molybdenum metabolism, in that more than 20 potentially interacting proteins are assumed to form the cellular molybdenum network, as a case study to establish the functionality of the new vectors. Using these vectors, we report the formation of the molybdopterin synthase complex by interaction of Arabidopsis proteins Cnx6 and Cnx7 detected by BiFC as well as the simultaneous formation of Cn×6/Cn×6 and Cn×6/Cn×7 complexes revealed by mcBiFC. Consequently, these GATEWAY-based BiFC vector systems should significantly facilitate the large-scale investigation of complex regulatory networks in plant cells.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号