首页> 外文期刊>分子植物(英文版) >An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots
【24h】

An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots

机译:拟南芥ABC转运蛋白通过调节根系中的铁稳态来介导磷酸盐缺乏诱导的根系结构重塑。

获取原文
获取原文并翻译 | 示例
       

摘要

The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil.The underlying mechanism controlling this response,however,is poorly understood.In this study,we identified an Arabidopsis mutant,hpsl0 (hypersensitive to Pi starvation 10),which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi deficiency,hpsl0 is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene,which is involved in plant tolerance to aluminum toxicity.Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast.This protein complex mediates a highly electrogenie transport in Xenopus oocytes.Under Pi deficiency,als3 accumulates higher levels of Fe3+ in its roots than the wild type does.In Arabidopsis,LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases,which when mutated,reduce Fe3+ accumulation in roots and cause root growth to be insensitive to Pi deficiency.Here,we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.
机译:根系结构的重塑是植物对磷(Pi)缺乏症的主要发育反应,被认为可以增强植物为表土中可用的Pi进行觅食的能力。然而,对该反应的潜在机制了解甚少。在这项研究中,我们鉴定了一个拟南芥突变体hpsl0(对Pi饥饿10过敏),在Pi充足的条件下形态正常,但在Pi缺乏的情况下显示出对初级根生长的抑制作用增强以及侧根产量增加,hpsl0是先前确定的等位基因(铝敏感3(ALS3)基因的als3-3),参与植物对铝毒性的耐受性。我们的结果表明,ALS3及其相互作用蛋白AtSTAR1在液泡膜中形成ABC转运蛋白复合物,该蛋白复合物介导了高电迁移性在Pi缺乏下,als3在根系中的Fe3 +积累水平高于野生型。在拟南芥中,LPR1 (低磷酸盐根1)和LPR2编码铁氧化酶,当它们突变时,减少根中的Fe3 +积累并导致根生长对Pi缺乏症不敏感。在此,我们提供了令人信服的证据,表明ALS3与LPR1 / 2协同调节Pi引起的Pi缺乏症。通过调节根中的铁稳态来重塑根结构。

著录项

  • 来源
    《分子植物(英文版)》 |2017年第2期|244-259|共16页
  • 作者单位

    Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;

    USDA-ARS, Robert Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14580, USA;

    Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;

    Department of Horticulture, Purdue University, West Lafayette, IN 47907-2010, USA;

    State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China;

    Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA;

    Global Institute for Food Security, University of Saskatchewan, Saskatoon S7N 4J8, Canada;

    Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号