首页> 外文期刊>光:科学与应用(英文版) >Plasmonic bacteria on a nanoporous mirror via hydrodynamic trapping for rapid identification of waterborne pathogens
【24h】

Plasmonic bacteria on a nanoporous mirror via hydrodynamic trapping for rapid identification of waterborne pathogens

机译:通过流体动力捕集在纳米孔镜上的等离子细菌可快速识别水性病原体

获取原文
获取原文并翻译 | 示例
       

摘要

A rapid,precise method for identifying waterborne pathogens is critically needed for effective disinfection and better treatment.However,conventional methods,such as culture-based counting,generally suffer from slow detection times and low sensitivities.Here,we developed a rapid detection method for tracing waterborne pathogens by an innovative optofluidic platform,a plasmonic bacteria on a nanoporous mirror,that allows effective hydrodynamic cell trapping,enrichment of pathogens,and optical signal amplifications.We designed and simulated the integrated optofluidic platform to maximize the enrichment of the bacteria and to align bacteria on the nanopores and plasmonic mirror via hydrodynamic cell trapping.Gold nanoparticles are self-assembled to form antenna arrays on thesurface of bacteria,such as Escherichia coli and Pseudomonas aeruginosa,by replacing citrate with hydroxylamine hydrochloride in order to amplify the signal of the plasmonic optical array.Owing to the synergistic contributions of focused light via the nanopore geometry,self-assembled nanoplasmonic optical antennas on the surface of bacteria,and plasmonic mirror,we obtain a sensitivity of detecting E.coli as low as 102 cells/ml via surface-enhanced Raman spectroscopy.We believe that our label-free strategy via an integrated optofluidic platform will pave the way for the rapid,precise identification of various pathogens.
机译:为了有效地消毒和更好地处理细菌,急需一种快速,准确的方法来鉴定水传播的病原体。但是,常规方法(例如基于培养物的计数)通常检测时间较慢且灵敏度较低。通过创新的光流平台(一种在纳米孔镜上的等离子细菌)追踪水性病原体,可以有效地进行流体动力细胞捕获,病原体富集和光信号放大。通过流体动力诱捕使纳米孔和等离子镜上的细菌对齐等离子体光学阵列。由于协同控制通过纳米孔几何形状的聚焦光,细菌表面上的自组装纳米等离子体光学天线和等离子体镜,我们可以通过表面增强拉曼光谱法检测低至102细胞/ ml的大肠杆菌。我们相信我们通过集成的光流体平台实现的无标签策略将为快速,准确地鉴定各种病原体铺平道路。

著录项

  • 来源
    《光:科学与应用(英文版)》 |2018年第6期|716-724|共9页
  • 作者单位

    Department of Chemical and Biomolecular Engineering, Sogang University,Seoul 04107, Korea;

    Berkeley Sensor and Actuator Center, Departments of Bioengineering, Electrical Engineering and Computer Science, Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA;

    Department of Chemical and Biomolecular Engineering, Sogang University,Seoul 04107, Korea;

    Department of Mechanical Engineering, Sogang University, Seoul 04107,Korea;

    Department of Mechanical Engineering, Sogang University, Seoul 04107,Korea;

    Department of Mechanical Engineering, Sogang University, Seoul 04107,Korea;

    Berkeley Sensor and Actuator Center, Departments of Bioengineering, Electrical Engineering and Computer Science, Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA;

    Department of Chemical and Biomolecular Engineering, Sogang University,Seoul 04107, Korea;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号