首页> 中文期刊> 《光:科学与应用(英文版)》 >Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

         

摘要

Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime.The structures are based on high-finesse GaAs/AlAs micropillar cavities,each with an active medium consisting of a layer of InGaAs quantum dots(QDs)and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode(highβ-factor).This paper demonstrates that the usual criterion for lasing with a conventional(lowβ-factor)cavity,that is,a sharp non-linearity in the input–output curve accompanied by noticeable linewidth narrowing,has to be reinforced by the equal-time second-order photon autocorrelation function to confirm lasing.The paper also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance,a manifestation of the correlations possible in high-βmicrocavities operating with QDs.In terms of consolidating the collected data and identifying the physics underlying laser action,both theory and experiment suggest a sole dependence on intracavity photon number.Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation,for devices ranging from light-emitting diodes(LEDs)and cavity-enhanced LEDs to lasers,lying on the same two curves:one for linewidth narrowing versus intracavity photon number and the other for g(2)(0)versus intracavity photon number.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号