首页> 中文期刊> 《浙江大学学报(英文版)B辑:生物医学与生物技术》 >Application of near-infrared spectroscopy to predict sweetpotato starch thermal properties and noodle quality

Application of near-infrared spectroscopy to predict sweetpotato starch thermal properties and noodle quality

         

摘要

Sweetpotato starch thermal properties and its noodle quality were analyzed using a rapid predictive method based on near-infrared spectroscopy (NIRS). This method was established based on a total of 93 sweetpotato genotypes with diverse genetic background. Starch samples were scanned by NIRS and analyzed for quality properties by reference methods. Results of statistical modelling indicated that NIRS was reasonably accurate in predicting gelatinization onset temperature (To) (standard error of prediction SEP=2.014 °C, coefficient of determination RSQ=0.85), gelatinization peak temperature (Tp) (SEP=1.371 °C, RSQ=0.89), gelatinization temperature range (Tr) (SEP=2.234 °C, RSQ=0.86), and cooling resistance (CR) (SEP=0.528, RSQ=0.89). Gelatinization completion temperature (Tc), enthalpy of gelatinization (?H), cooling loss (CL) and swelling degree (SWD), were modelled less well with RSQ between 0.63 and 0.84. The present results suggested that the NIRS based method was sufficiently accurate and practical for routine analysis of sweetpotato starch and its noodle quality.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号