首页> 外文期刊>浙江大学学报(英文版)(A辑:应用物理和工程) >Corner strength enhancement of high strength cold-formed steel at normal room and elevated temperatures
【24h】

Corner strength enhancement of high strength cold-formed steel at normal room and elevated temperatures

机译:常温和高温下高强度冷弯型钢的角强度提高

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, the suitability of current design methods for the 0.2% proof yield strength of the corner regions for high strength cold-formed steel at normal room temperature was investigated. The current standard predictions are generally accurate for outer corner specimen but conservative for inner corner specimen. Based on the experimental results, an analytical model to predict the corner strength of high strength cold-formed steel at normal room temperature was also proposed. The comparison indicated that the proposed model predicted well the corner strength of high strength cold-formed steel not only at normal room temperature but also at elevated temperatures. It is shown that the predictions obtained from the proposed model agree well with the test results. Generally the corner strength enhancement of high strength cold-formed steel decreases when the temperature increases.
机译:In this study,the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at norrnal room temperature was investigated.The current standard predictions are generally accurate for outer comer specimen but conservative for inner comer specimen.Based on the experimental results,an analytical model to predict the comer strength of high strength cold-formed steel at normal room temperature was also proposed.The comparison indicated that the proposed model predicted well the comer strength of high strength cold-formed steel not only at normal room temperature but also at elevated temperatures.It is shown that the predictions obtained from the proposed model agree well with the test results.Generally the comer strength enhancement of high strength cold-formed steel decreases when the temperature increases.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号