首页> 中文期刊> 《沈阳化工大学学报》 >有机废弃物厌氧生物制氢处理

有机废弃物厌氧生物制氢处理

         

摘要

The resources of fossil fuel will be dried up in the near future. Moreover,greenhouse gas from fossil fuel burning has worsened the global warming situation. The development of sustainable en-ergy has currently become a hot issue in the world. H2 as cleanest ernergy was combused with O2 to pro-duce pure water. The paper presents a model of bio-hydrogenation process with anaerobic bacterial growth on organic wastewater. Data from laboratory scale reactors operating with artificial substrates u-sing bacteria from agricultural waste were conducted. The calculating bio-hydrogen yields and assuming from the waste stream were suitable properties in the digestion. Bacteria played a very important role in the processes of bio-hydrogenation. Bacteria that produce hydrogen were isolated by its characteristic of heat-resistance. Factors that affect the efficiency of bio-hydrogenation process include pH, temperature and the ratio of biomass to substrate concentration( F/M) . By using glucose as the substrate with Clos-tridium sp. seeding,it is shown that of bio-hydrogenation can be produced efficiently in the experiment. Methanogenesis which consumes H2 may be prevented by special operation,and optimum parameters, such as pH around 5,Temperature at 35 ℃,HRT approximately 8hours and F/M between 25% ~50%. And the maximum hydrogen concentration is found to be 88. 6%( V/V) for practical application were obtained from the model.%化石燃料的枯竭,化石燃料燃烧排放的温室气体加剧了全球变暖的问题,已经成为世界的热点问题之一.氢气作为清洁能源,与沼气和化石燃料相比,燃烧产物只有水.利用有机废弃物厌氧发酵制氢气,通过厌氧反应器和农业废弃物生物制氢模型,计算实验过程中生物产氢量和废弃物消解与微生物生长的关系.实验过程表明:在生物制氢过程中,产氢细菌作用显著,产氢菌可以通过其耐热性进行筛选.而影响生物制氢效率的因素还包括:pH值、温度和有机负荷率等.通过有机物梭菌转化培养,生物制氢纯度高且过程可以有效地进行.采用产甲烷菌抑制步可以消除其H2 的消耗.当pH值为4. 5~5,温度为35 ℃,水力停留时间( HRT)为8 h,有机负荷率为25 % ~50 %时,通过模型对实验数据拟合得到最大氢气体积分数为88. 6 %.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号