首页> 中文期刊> 《上海交通大学学报:英文版》 >Nonlinear Control for Autonomous Underwater Glider Motion Based on Inverse System Method

Nonlinear Control for Autonomous Underwater Glider Motion Based on Inverse System Method

         

摘要

Autonomous underwater gliders are highly effcient,buoyancy-driven,winged autonomous underwater vehicles. Their dynamics are multivariable nonlinear systems. In addition,the gliders are underactuated and diffcult to maneuver,and also dependent on their operational environment. To confront these problems and to design an effective controller,the inverse system method was used to decouple the original system into two independent single variable linear subsystems. The stability of the zero dynamics was analyzed,and an additional closed-loop controller for each linear subsystem was designed by sliding mode control method to form a type of composite controller. Simulation results demonstrate that the derived nonlinear controller is able to cope with the aforementioned problems simultaneously and satisfactorily.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号