首页> 中文期刊> 《岩石力学与岩土工程学报:英文版》 >Classification of clustered microseismic events in a coal mine using machine learning

Classification of clustered microseismic events in a coal mine using machine learning

         

摘要

Discrimination of seismicity distributed in different areas is essential for reliable seismic risk assessment in mines.Although machine learning has been widely applied in seismic data processing,feasibility and reliability of applying this technique to classify spatially clustered seismic events in underground mines are yet to be investigated.In this research,two groups of seismic events with a minimum local magnitude(ML) of-3 were observed in an underground coal mine.They were respectively located around a dyke and the longwall face.Additionally,two types of undesired signals were also recorded.Four machine learning methods,i.e.random forest(RF),support vector machine(SVM),deep convolutional neural network(DCNN),and residual neural network(ResNN),were used for classifying these signals.The results obtained based on a primary dataset showed that these seismic events could be classified with at least 91% accuracy.The DCNN using seismogram images as the inputs reached the best performance with more than 94% accuracy.As mining is a dynamic progress which could change the characteristics of seismic signals,the temporal variance in the prediction performance of DCNN was also investigated to assess the reliability of this classifier during mining.A cascaded workflow consisting of database update,model training,signal prediction,and results review was established.By progressively calibrating the DCNN model,it achieved up to 99% prediction accuracy.The results demonstrated that machine learning is a reliable tool for the automatic discrimination of spatially clustered seismicity in underground mining.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号