首页> 中文期刊> 《岩石力学与岩土工程学报:英文版》 >Optimized Mamdani fuzzy models for predicting the strength of intactrocks and anisotropic rock masses

Optimized Mamdani fuzzy models for predicting the strength of intactrocks and anisotropic rock masses

         

摘要

Development of accurate and reliable models for predicting the strength of rocks and rock masses is one of the most common interests of geologists,civil and mining engineers and many others.Due to uncertainties in evaluation of effective parameters and also complicated nature of geological materials,it is difficult to estimate the strength precisely using theoretical approaches.On the other hand,intelligent approaches have attracted much attention as novel and effective tools of solving complicated problems in engineering practice over the past decades.In this paper,a new method is proposed for mining descriptive Mamdani fuzzy inference systems to predict the strength of intact rocks and anisotropic rock masses containing well-defined through-going joint.The proposed method initially employs a genetic algorithm(GA)to pick important rules from a preliminary rule base produced by grid partitioning and,subsequently,selected rules are given weights using the GA.Moreover,an information criterion is used during the first phase to optimize the models in terms of accuracy and complexity.The proposed hybrid method can be considered as a robust optimization task which produces promising results compared with previous approaches.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号