首页> 中文期刊> 《防务技术:英文版》 >Shock wave mitigation using zig-zag structures and cylindrical obstructions

Shock wave mitigation using zig-zag structures and cylindrical obstructions

         

摘要

The present study focuses on the mitigation of shock wave using novel geometric passages in the flow field.The strategy is to produce multiple shock reflections and diffractions in the passage with minimum flow obstruction,which in turn is expected to reduce the shock wave strength at the target location.In the present study the interaction of a plane shock front(generated from a shock tube)with various geometric designs such as,1)zig-zag geometric passage,2)staggered cylindrical obstructions and 3)zigzag passage with cylindrical obstructions have been investigated using computational technique.It is seen from the numerical simulation that,among the various designs,the maximum shock attenuation is produced by the zig-zag passage with cylindrical obstructions which is then followed by zig-zag passage and staggered cylindrical obstructions.A comprehensive investigation on the shock wave reflection and diffraction phenomena happening in the proposed complex passages have also been carried out.In the new zig-zag design,the initial shock wave undergoes shock wave reflection and diffraction process which swaps alternatively as the shock front moves from one turn to the other turn.This cyclic shock reflection and diffraction process helps in diffusing the shock wave energy with practically no obstruction to the flow field.It is found that by combining the shock attenuation ability of zig-zag passage(using shock reflection and diffraction)with the shock attenuation ability of cylindrical blocks(by flow obstruction),a drastic attenuation in shock strength can be achieved with moderate level of flow blocking.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号