首页> 外文期刊>兵工学报(英文版) >Effect of organo-modified montmorillonite nanoclay on mechanical, thermal and ablation behavior of carbon fiber/phenolic resin composites
【24h】

Effect of organo-modified montmorillonite nanoclay on mechanical, thermal and ablation behavior of carbon fiber/phenolic resin composites

机译:有机改性蒙脱石纳米粘土对碳纤维/酚醛树脂复合材料机械,热和消融行为的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The mechanical,thermal and ablation properties of carbon phenolic(C-Ph)composites(Type-I)reinforced with different weight percentages of organo-modified montmorillonite(o-MMT)nanoclay have been studied experimentally.Ball milling was used to disperse different weight(wt)percentages(0,1,2,4,6 wt.%)of nanoclay into phenolic resin.Viscosity changes to resin due to nanoclay was studied.On the other hand,nanoclay added phenolic matrix composites(Type-II)were prepared to study the dispersion of nanoclay in phenolic matrix by small angle X-ray scattering and thermal stability changes to the matrix by thermogravimetric analyser(TGA).This data was used to understand the mechanical,thermal and ablation properties of Type-I composites.Inter laminar shear strength(ILSS),flexural strength and flexural modulus of Type I composites increased by about 29%,12%and 7%respectively at2 wt.%addition of nanoclay beyond which these properties decreased.This was attributed to reduced fiber volume fraction(%Vf)of Type-I composites due to nanoclay addition at such high loadings.Mass ablation rate of Type-I composites was evaluated using oxy acetylene torch test at low heat flux(125 W/cm^(2))and high heat flux levels(500 W/cm^(2)).Mass ablation rates have increased at both flux levels marginally up to 2 wt.%addition of nanoclay beyond which it has increased significantly.This is in contrast to increased thermal stability observed for Type-I and Type-II composites up to 2 wt.%addition of nanoclay.Increased ablation rates due to nanoclay addition was attributed to higher insulation efficiency of nanolcay,which accumulates more heat energy in limited area behind the ablation front and self-propagating ablation mechanisms triggered by thermal decomposition of organic part of nanoclay.

著录项

  • 来源
    《兵工学报(英文版)》 |2021年第3期|812-820|共9页
  • 作者单位

    Advanced Systems Laboratory DRDO Hyderabad India;

    Advanced Systems Laboratory DRDO Hyderabad India;

    National Institute of Technology Warangal India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 04:55:39
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号