首页> 外文期刊>中国海洋大学学报(英文版) >Evaluation of the Momentum Closure Schemes in MPAS-Ocean
【24h】

Evaluation of the Momentum Closure Schemes in MPAS-Ocean

机译:MPAS-海洋动量关闭方案的评估

获取原文
获取原文并翻译 | 示例
       

摘要

In order to compare and evaluate the performances of the Laplacian viscosity closure,the biharmonic viscosity closure,and the Leith closure momentum schemes in the MPAS-Ocean model,a variety of physical quantities,such as the relative reference potential energy (RPE) change,the RPE time change rate (RPETCR),the grid Reynolds number,the root mean square (RMS) of kinetic energy,and the spectra of kinetic energy and enstrophy,are calculated on the basis of results of a 3D baroclinic periodic channel.Results indicate that:1) The RPETCR demonstrates a saturation phenomenon in baroclinic eddy tests.The critical grid Reynolds number corresponding to RPETCR saturation differs between the three closures:the largest value is in the biharmonic viscosity closure,followed by that in the Laplacian viscosity closure,and that in the Leith closure is the smallest.2) All three closures can effectively suppress spurious dianeutral mixing by reducing the grid Reynolds number under sub-saturation conditions of the RPETCR,but they can also damage certain physical processes.Generally,the damage to the rotation process is greater than that to the advection process.3) The dissipation in the biharmonic viscosity closure is strongly dependent on scales.Most dissipation concentrates on small scales,and the energy of small-scale eddies is often transferred to large-scale kinetic energy.The viscous dissipation in the Laplacian viscosity closure is the strongest on various scales,followed by that in the Leith closure.Note that part of the small-scale kinetic energy is also transferred to large-scale kinetic energy in the Leith closure.4) The characteristic length scale L and the dimensionless parameter Г in the Leith closure are inherently coupled.The RPETCR is inversely proportional to the product of Г and L.When the product of Г and L is constant,both the simulated RPETCR and the inhibition of spurious dianeutral mixing are the same in all tests using the Leith closure.The dissipative scale in the Leith closure depends on the parameter L,and the dissipative intensity depends on the parameter Г.5) Although optimal results may not be achieved by using the optimal parameters obtained from the 2D barotropic model in the 3D baroclinic simulation,the total energies are dissipative in all three closures.Dissipation is the strongest in the biharmonic viscosity closure,followed by that in the Leith closure,and that in the Laplacian viscosity closure is the weakest.Mesoscale eddies develop the fastest in the biharmonic viscosity closure after the baroclinic adjustment process finishes,and the kinetic energy reaches its maximum,which is attributed to the smallest dissipation of enstrophy in the biharmonic viscosity closure.Mesoscale eddies develop the slowest,and the kinetic energy peak value is the smallest in the Laplacian viscosity closure.Results in the Leith closure are between that in the biharmonic viscosity closure and the Laplacian viscosity closure.
机译:为了比较和评估Laplacian粘度闭合的性能,Biharmonic粘度闭合和MPAS-海洋模型中的Leith闭合动量方案,各种物理量,如相对参考势能(RPE)变化,基于3D条巴细胞周期性通道的结果,计算RPE时间变速率(RPETCR),动能的电网雷诺数,动能和敌对的光谱,以及动能和敌对的谱。结果表明所以:1)RPETCR展示了齐芯涡流试验中的饱和现象。对应于RPETCR饱和度的临界网格雷诺数在三个封闭之间的不同之处在于,最大值是在比较粘度闭合,然后在拉普拉斯粘度闭合中,并且在Leith封闭中是最小的.2)所有三个封闭件可以通过在亚饱和条件下减少网格雷诺数来有效抑制虚假的二展混合rpetcr,但它们也可以损害某些物理过程。生成的损坏大于前进过程的损坏.3)比较粘度闭合的耗散强烈依赖于尺度。最耗散浓缩浓缩物小鳞片,小规模漩涡的能量通常转移到大规模的动能。拉普拉斯粘度闭合的粘性耗散是各种鳞片上最强的,其次是在利石封闭中的那个部分-scale动能也被转移到Leith封闭中的大规模动能.4)Leith闭合中的特征长度L和无量纲参数Г固有地耦合。RPECCR与Г和L的产物成反比当Г和L的产物是恒定的,模拟的RPETCR和对杂散二仙混合的抑制在所有测试中都是相同的,使用Leith闭合的所有测试。耗散量表Leith闭合取决于参数L,耗散强度取决于参数Г.5),尽管通过使用从3D条巴曲线模拟中的2D波波波波特模型获得的最佳参数可能无法实现最佳结果,但总能量是耗散的在所有三个封闭中.Dissipation在双态粘度闭合中最强,其次是在Leith闭合,并且在拉普拉斯粘度闭合中是最薄弱的。在曲金调整过程完成后,在双曲态粘度闭合中发育最快的态度并且动能达到其最大值,这归因于敌对侵蚀的比较粘度闭合.Mesoscale Eddies在Laplacian粘度闭合中发育最慢的,动能峰值是最小的。Leith闭合在双态粘度闭合和拉普拉斯粘度闭合之间。

著录项

  • 来源
    《中国海洋大学学报(英文版)》 |2018年第2期|227-243|共17页
  • 作者

    ZHAO Shinei; LIU Yudi; LIU Wei;

  • 作者单位

    College of Meteorology and Oceanography, Nanjing University of Science and Technology, Nanjing 210094, China;

    College of Meteorology and Oceanography, Nanjing University of Science and Technology, Nanjing 210094, China;

    College of Meteorology and Oceanography, Nanjing University of Science and Technology, Nanjing 210094, China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 03:49:05
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号