首页> 中文期刊> 《金属学报:英文版》 >Role of Solute Rare Earth in Altering Phase Transformations during Continuous Cooling of a Low Alloy Cr–Mo–V Steel

Role of Solute Rare Earth in Altering Phase Transformations during Continuous Cooling of a Low Alloy Cr–Mo–V Steel

         

摘要

Effects of solute rare earth(RE)on continuous cooling transformation of a low-alloy Cr–Mo–V bainitic steel are investigated in detail by dilatometry,optical microscopy(OM),scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Microstructures appeared in thermal dilatometric samples of both low-alloy Cr–Mo–V(RE)steels are composed of quasi-polygonal ferrite(QPF),degenerate pearlite(DP),granular bainite(GB),lath bainite(LB),and martensite(M)depending on cooling rate.When cooling rate is lower than 2°C/s,the addition of RE suppresses QPF transformation,and thereby inducing a broader transformation region of GB.When cooling rate ranges from 2 to 100°C/s,the addition of RE decreases the start temperature of bainitic transformation distinctly,which results in finer bainitic ferrite grain size and higher dislocation density.The addition of RE can enhance the hardness of the low alloy Cr–Mo–V steel by affecting the aforementioned diffusional and/or partly displacive transformation.However,when cooling rate increases up to 150°C/s,two steels have the same hardness value of about 435 HV due to only martensite obtained by displacive transformation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号