首页> 中文期刊> 《金属学报:英文版 》 >Effect of Nb and Mo on the Microstructure, Mechanical Properties and Ductility-Dip Cracking of Ni–Cr–Fe Weld Metals

Effect of Nb and Mo on the Microstructure, Mechanical Properties and Ductility-Dip Cracking of Ni–Cr–Fe Weld Metals

         

摘要

A series of Ni–Cr–Fe welding wires with different Nb and Mo contents were designed to investigate the effect of Nb and Mo on the microstructure, mechanical properties and the ductility-dip cracking susceptibility of the weld metals by optical microscopy(OM), scanning electron microscopy, X-ray diffraction as well as the tensile and impact tests. Results showed that large Laves phases formed and distributed along the interdendritic regions with high Nb or Mo addition. The Cr-carbide(M_(23)C_6) was suppressed to precipitate at the grain boundaries with high Nb addition. Tensile testing indicates that the ultimate strength of weld metals increases with Nb or Mo addition. However, the voids formed easily around the large Laves phases in the interdendritic area during tensile testing for the weld metal with high Mo content. It is found that the tensile fractographs of high Mo weld metals show a typical feature of interdendritic fracture. The high Nb or Mo addition, which leads to the formation of large Laves phases, exposes a great weakening effect on the impact toughness of weld metals. In addition, the ductility-dip cracking was not found by OM in the selected cross sections of weld metals with different Nb additions. High Nb addition can eliminate the ductility-dip cracking from the Ni–Cr–Fe weld metals effectively.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号