首页> 中文期刊>金属学报:英文版 >Hydrogen Production Using ‘‘Direct-Starting” Biocathode Microbial Electrolysis Cell and the Analysis of Microbial Communities

Hydrogen Production Using ‘‘Direct-Starting” Biocathode Microbial Electrolysis Cell and the Analysis of Microbial Communities

     

摘要

In this study, a ‘‘direct-starting'' procedure was used to activate a single-chamber biocathode microbial electrolysis cell(MEC) and the development of a biocathode was studied through output current curves and cyclic voltammograms. It only took 163 h for a successful start-up, and a current density of 14.75 A/m^2 was obtained. In the formal hydrogen-production stage, it was found that the biocathode MEC was comparable with the Pt/C cathode MEC in terms of current density and energy efficiency, and the hydrogen recovery, cathodic hydrogen recovery, and hydrogen production rate of the biocathode MEC were 71.22% ± 8.98%, 79.42% ± 5.94%, and 0.428 ± 0.054 m^3 H_2/m^3 days, respectively, which were slightly higher than those obtained with the Pt/C cathode MEC. Besides, under the effect of applied voltage, the microbial populations in the anodophilic biofilm of MEC(MECan) and the cathodophilic biofilm of MEC(MECca) were less diverse than those of the original aerobic activated sludge(AAS) and the anodophilic biofilm of MEC(MECan). Furthermore, the microbial community structures evidently differed between MECan/MECca and AAS/MFC.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号